Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Physiol Biochem Zool ; 96(5): 369-377, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37713718

RESUMO

AbstractIn the face of increasing environmental temperatures, operative differences between mitochondrial function and whole-animal phenotypic response to the environment are underrepresented in research, especially in subtemperate ectothermic vertebrates. A novel approach to exploring this connection is to examine model species that are genetically similar but that have different whole-animal phenotypes, each of which inhabits different environments. The blind Mexican cavefish (Astyanax mexicanus) has the following two morphotypes: a surface form found in aboveground rivers and an obligate cave-dwelling form. Each morphotype inhabits vastly different thermal and oxygen environments. Whole-animal and mitochondrial responses to thermal acclimation and oxidative stress, with respect to increasing temperatures, have not been previously determined in either morphotype of this species. Here, we chronically acclimated both morphotypes to three temperatures (14°C, 25°C, and 31°C) to establish potential for acclimation and critical thermal maxima (CTmax) for each morphotype of this species. After measuring CTmax in six cohorts, we additionally measured enzymatic antioxidant capacity (catalase, superoxide dismutase, and glutathione peroxidase activities), peroxyl scavenging capacity, and lipid peroxidation damage in white epaxial muscle for each individual. We found a significant effect of acclimation temperature on CTmax (F=29.57, P<0.001) but no effect of morphotype on CTmax (F=2.092, P=0.162). Additionally, we found that morphotype had a significant effect on glutathione peroxidase activity, with the surface morphotype having increased glutathione peroxidase activity compared with the cave morphotype (F=6.270, P=0.020). No other oxidative stress variable demonstrated significant differences. Increases in CTmax with chronic thermal acclimation to higher temperatures suggests that there is some degree of phenotypic plasticity in this species that nominally occupies thermally stable environments. The decreased glutathione peroxidase activity in the cave morphotype may be related to decreased environmental oxygen concentration and decreased metabolic rate in this environmentally constrained morphotype compared to in its surface-living counterparts.


Assuntos
Aclimatação , Estresse Oxidativo , Animais , Aclimatação/fisiologia , Temperatura , Oxigênio , Glutationa Peroxidase , Músculos , Tomografia Computadorizada por Raios X
2.
J Exp Zool A Ecol Integr Physiol ; 339(9): 861-868, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37493010

RESUMO

Proper muscle function and muscle fiber structures that match the environmental demands of organisms are imperative to their success in any ecosystem. The Mexican cavefish, Astyanax mexicanus, has two morphotypes: an obligate cave-dwelling form that lives in thermally insulated caves and an O2 poor environment, and a surface form that lives in a more thermally variable, but O2 rich river environment. As environment can determine physiological adaptations, it is of interest to compare the aerobic and anaerobic metabolic profiles of white muscle metabolism in both morphotypes of this species, as well as their muscle structures. Here, we used white muscle of both morphotypes of the Mexican cavefish to determine citrate synthase (CS) activity as a measure of aerobic potential, and lactate concentration as a measure of anaerobic potential at three different chronic acclimation temperatures (14°C, 25°C, and 31°C). By examining aerobic and anaerobic potential in both morphs, we sought to link environmental thermal flexibility to muscle metabolism. We found that the surface morphotype had higher CS activity and lower lactate concentration, suggesting an overall more efficient usage of aerobic metabolism; whereas the cave morphotype showed lower CS activity and higher lactate concentration, suggesting a stronger reliance on anaerobic pathways. We also measured white muscle histological variables that have been previously linked to whole-animal metabolism: fiber diameter, number of nuclei per mm of fiber and myonuclear domain (MND) of both morphotypes at 25°C to examine cell-level differences in muscle morphology. However, we found no differences in fiber diameter, number of nuclei per mm of fiber or MND between the two morphotypes. Thus, although the cellular morphology is similar in these species, the environmental differences in the evolution of the two morphs has led to differences in their metabolic profiles.


Assuntos
Cavernas , Characidae , Animais , Ecossistema , Anaerobiose , Fibras Musculares Esqueléticas , Lactatos
3.
J Therm Biol ; 114: 103578, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37344032

RESUMO

Heat waves and cold snaps are projected to rise in magnitude, duration, interval, and harshness in the coming years. The current literature examining thermal impacts on the physiology of organisms rarely uses chronic, variable thermal acclimations despite the fact that climate change predictions project a more variable environment. If we are to determine species' susceptibility to climate change, chronic and variable lab acclimations should be prioritized. Here, we acclimated the eurytolerant sheepshead minnow (Cyprinodon variegatus) to two extreme cycling thermal regimes: one warm [resting 27 °C with a spike to 33 °C for 8 h daily], one cold [resting 6.5 °C with a spike to 12 °C for 8 h daily], and three chronically stable conditions (10, 22, and 30 °C) for comparison. We measured enzymatic antioxidants (catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx)), total antioxidant capacity, lipid peroxidation (LPO) damage, and citrate synthase (CS) activity in white epaxial muscle. Of particular note, we found significant increases in log CAT activity and SOD concentration in the warm cycling temperatures, and significant increases in GPx activity in the cold cycling temperatures. We found no significant accumulation of LPO damage in any of our thermal acclimation treatments. Thus, sheepshead minnows demonstrate two particularly different mechanisms towards dealing with thermal variation in low and high temperatures. The enzymatic differences between low and high cycling temperatures may define pathways of eurytolerant organisms and how they may survive predicted variability in thermal regimes.


Assuntos
Aclimatação , Temperatura Baixa , Animais , Temperatura , Aclimatação/fisiologia , Peixes/fisiologia , Antioxidantes/metabolismo , Superóxido Dismutase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...